Ex 13.1

Answer 2.

The line 3y = 5x - 7 passes through (p,6)

 \therefore (p,6) will satisfy the equation of line

Answer 3.

The line 3y = 5x - 7 passes through (p,6)

 \therefore (p,6) will satisfy the equation of line

Answer 4.

The line 4x = 11 - 3y passes through the point (a, 5),

 \therefore (a,5) will satisfy the equation of line

$$4(a) = 11 - 3(5)$$
$$\Rightarrow 4a = -4$$
$$\Rightarrow a = -1$$

Answer 5.

The line y = 6 - $\frac{3x}{2}$ passes through the point (r,3)

:: (r,3) will satisfy the equation of line

$$3 = 6 - \frac{3r}{2}$$
$$\Rightarrow -3 = -\frac{3r}{2}$$
$$\Rightarrow r = 2$$

Answer 6.

The line $\frac{3+5y}{2} = \frac{4x-7}{2}$ passes through the point (1,k), \therefore (1,k) will satisfy the equation of line $\frac{3+5k}{2} = \frac{4(1)-7}{3}$ $\Rightarrow 9+15k = 6$ $\Rightarrow 15k = -15$ $\Rightarrow k = -1$

Answer 7.

Let the point of intersection of AB and line 4x+4y=11 be the point P(a,b),

Also given 4x+3y = 11 bisects line segment AB \therefore AP : PB = 1 : 1 Coordinates of P are, $P(a,b) = P\left(\frac{6+4}{2}, \frac{m-9}{2}\right) = P\left(5, \frac{m-9}{2}\right)$ Since P(a,b) lies on the line 4x+3y=11, \therefore P will satisfy the equation of line $4(5) + 3\left(\frac{m-9}{2}\right) = 11$ $\frac{3m-27}{2} = 11-20$ $\Rightarrow 3m-27 = -18$ $\Rightarrow 3m = 9$ $\Rightarrow m = 3$

Answer 8.

Let the point of intersection of AB and the line 2x-5y+31=0 be the point R(a,b)

Also, given the line 2x - 5y + 31 = 0 bisects the line segment AB \therefore AR : RB = 1 : 1 Coordinates of R are, $R(a,b) = R\left(\frac{-4+p}{2}, \frac{5+9}{2}\right) = R\left(\frac{-4+p}{2}, 7\right)$ \therefore R(a,b) lies on the line 2x-5y+31=0, \therefore R will satisfy the equation of the line $2\left(\frac{-4+p}{2}\right) - 5(7) + 31 = 0$ $\Rightarrow (-4+p) - 4 = 0$

Answer 9.

 $\Rightarrow p = 8$

Let the point of intersection of AB and the line 3x + 4y = 18 be the point P(a,b)

Also, given the line 3x+4y=18 bisects the line segment AB \therefore AP : PB = 1 : 1 Coordinates of P are, $P(a,b) = P\left(\frac{3-7}{2}, \frac{7+z}{2}\right) = P\left(-2, \frac{7+z}{2}\right)$ \therefore P(a,b) lies on the line 3x + 4y = 18, \therefore P will satisfy the equation of the line $3(-2) + 4\left(\frac{7+z}{2}\right) = 18$ $\Rightarrow 14 + 2z = 24$ $\Rightarrow 2z = 10$ $\Rightarrow z = 5$

Answer 10.

Let the point of intersection of PQ and 5x - 3y + 1 = 0 be the point R(a,b).

Also given the line 5x - 3y + 1 = 0 divides the line segment PQ in the ratio 2 : 3, i.e. PR : PQ = 2 : 5 Coordinates of R are,

$$R(a,b) = R\left(\frac{14+6}{5}, \frac{18+3m}{5}\right) = R\left(4, \frac{18+3m}{5}\right)$$

 \therefore R(a,b) lies on the line 5x-3y+1=0,

 \therefore R will satisfy the equation of the line

$$5(4) - 3\left(\frac{18 + 3m}{5}\right) + 1 = 0$$

$$\Rightarrow -3\left(\frac{18+3m}{5}\right) = -21$$
$$\Rightarrow 18+3m = 35$$
$$\Rightarrow 3m = 17$$
$$\Rightarrow m = \frac{17}{3}$$

Answer 11.

Let the point of intersection of AB and the line 7x-8y=4, be the point P(a,b).

Also, given the line 7x-8y = 4 divides the line segment AB in the ratio 2 : 5. i.e. AP : PB = 2 : 5 Coordinates of P are, $P(a,b) = P\left(\frac{12-40}{7}, \frac{2k-20}{7}\right) = P\left(-4, \frac{2k-20}{7}\right)$ $\therefore P(a,b) \text{ lies on the line } 7x - 8y = 4,$ $\therefore P \text{ will satisfy the equation of the line}$ $7(-4) - 8\left(\frac{2k-20}{7}\right) = 4$ $-8\left(\frac{2k-20}{7}\right) = 32$ 2k - 20 = -28 2k = -8 k = -4

Answer 12.

Let the point of intersection of PQ and the line 5x+3y=25, be the point R(x,y)

Also, given the line 5x+3y = 25 divides the line segment PQ in the ratio 1 : 3. i.e. PR : RQ = 1 : 3

Coordinates of R are,

$$R(x, y) = R\left(\frac{5+3b}{4}, \frac{8+12}{4}\right) = R\left(\frac{5+3b}{4}, 5\right)$$

 $\therefore R(x, y)$ lies on the line 5x+3y=25

 \therefore R will satisfy the equation of the line

$$5\left(\frac{5+3b}{4}\right)+3(5)=25$$
$$\Rightarrow 5\left(\frac{5+3b}{4}\right)=10$$
$$\Rightarrow 5+3b=8$$
$$\Rightarrow 3b=3$$
$$\Rightarrow b=1$$

Answer 13.

Let the point P on the line segment AB be P(a,b)

Also, given that P(a,b) divides the line segment AB in the ratio 2 : 3 i.e. AP : PB = 2 : 3 Coordinates of P are,

$$P(a,b) = P\left(\frac{16-6}{5}, \frac{16+9}{5}\right) = P(2,5)$$

If P(a,b) lies on the line 7x-2y=4, then will satisfy the equation of the line LHS 7(2) – 2(5) = 14 - 10 = 4 = RHS

Yes, the point P(2,5) lies on the line 7x - 2y = 4

Answer 14.

Let L(a,b) be the point on line segment PQ dividing it in the ratio 1:3

i.e. PL : LQ = 1 : 3 Coordinates of L are,

$$L(a,b) = L\left(\frac{11+9}{4}, \frac{-5+21}{4}\right) = L(5,4)$$

If L(a,b) lies on the line 2x+5y=20, then it will satisfy the equation of the line

LHS = $2(5) + 5(4) = 10 + 20 = 30 \neq RHS$

No, L(a,b) does not lie on the line 2x+5y = 20

Answer 15.

Let the point on x-axis be P(x,y) which divides the line segment AB in the ratio 1 : 2,

i.e. AP : PB = 1 : 2

Coordinates of P are,

$$P(x,y) = P\left(\frac{5+4}{3}, \frac{6+6}{3}\right)$$

x = 3, y=4.

If P(x,y) lies on the line 3x - 4y + 5 = 0, then it will satisfy the equation of the line.

LHS =3(3) - 4(4) + 5 = 9 - 9 = 0 = RHS

Yes, the point P lies on the line 3x-4y+5 = 0.

Ex 13.2

Answer 1. (a) Slope of line = $m = \tan \theta$ = tan 60° = √3 =1.73(b) Slope of line = $m = \tan \theta$ = tan50° =1.19(c) Slope of line = $m = \tan \theta$ =tan 45° = 1 (d) Slope of line = m = tan θ =tan75° $\tan(75^\circ) = \tan(45^\circ + 30^\circ) = \frac{\tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ}$ $=\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}$ $=\frac{2.73}{0.73}=\frac{273}{73}=3.73$ (e) Slope of line = $m = \tan \theta$

 $= \tan 30^\circ = \frac{1}{\sqrt{3}}$

Answer 2.

(a)
$$\tan \theta = 0.4663$$

 $\therefore \theta = 25^{\circ}$
(b) $\tan \theta = 1.4281$
 $\therefore \theta = 55^{\circ}$
(c) $\tan \theta = 3.0777$
 $\therefore \theta = 72^{\circ}$
(d) $\tan \theta = 5.6713$
 $\therefore \theta = 80^{\circ}$

(e) $\tan \theta = 0.5317$ $\therefore \theta = 28^{\circ}$

Answer 3.

(a) Slope of line = $\frac{y_2 - y_1}{x_2 - x_1}$ $=\frac{8-5}{-1-2}$ = -1 (b) Slope of line = $\frac{y_2 - y_1}{x_2 - x_1}$ $=\frac{13-7}{5-3}$ = 3 (c) Slope of line = $\frac{y_2 - y_1}{x_2 - x_1}$ $=\frac{-7+1}{-9-5}=\frac{3}{2}$ = 1.5 (d) Slope of line = $\frac{y_2 - y_1}{x_2 - x_1}$ (e) Slope of line = $\frac{y_2 - y_1}{x_2 - x_1}$ $=\frac{0-5}{5-0}$ = -1

Answer 4.

(a)
$$A(x_1, y_1) = A(a^2m^2, 2am)$$

 $B(x_2, y_2) = B(p^2m^2, 2pm)$
Slope of line $AB = \frac{y_2 - y_1}{x_2 - x_1}$
 $= \frac{2pm - 2am}{p^2m^2 - a^2m^2}$
 $= \frac{2m(p - a)}{m^2(p^2 - a^2)}$
 $= \frac{2}{m} \times \frac{(p - a)}{(p + a)(p - a)}$
 $= \frac{2}{m(p + a)}$
 $= \frac{2}{pm + am}$
(b) $A(x_1, y_1) = A(5pq, p^2q)$
 $B(x_2, y_2) = B(5qr, qr^2)$

Slope of line AB =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{qr^2 - p^2q}{5qr - 5pq}$$
$$= \frac{q(r^2 - p^2)}{5q(r - p)}$$
$$= \frac{1}{5} \frac{(r - p)(r + p)}{(r - p)}$$
$$= \frac{r + p}{5}$$

Answer 5.

(a)3x-2y=53x-5=2y $\frac{3}{2} \times -\frac{5}{2} = y$ y = mx + cSlope = $\frac{3}{5}$ (b)x+3y=73y = -x + 7 $y = -\frac{1}{3}x + \frac{7}{3}$ Slope = $-\frac{1}{3}$ (c)5x-y=10 5x - 10 = vSlope = 5(d)4x-2y=3-2y = -4x + 3 $y = 2x - \frac{3}{2}$ Slope = 2(e)5x+2y=112y = -5x + 11 $y = \frac{-5}{2} \times + \frac{11}{2}$ Slope = $-\frac{5}{5}$

Answer 6.

When the lines are perpendicular to the product of their slopes is -1.

i.e. $m_1 \times m_2 = -1$ (a) $2x \cdot 3y = 4$ $3y = 2x \cdot 4$ $y = \frac{2}{3} \times -\frac{4}{3}$ Slope $m_1 = \frac{2}{3}$ Required slope of line (m_2) $m_1 \cdot m_2 = -1$ $\Rightarrow m_2 = \frac{-1}{m_1}$

 \Rightarrow m₂ = $\frac{-1}{2/3} = \frac{-3}{2}$ (b)5x+2y-9=02y = -5x + 9 $y = -\frac{5}{2}x + \frac{9}{2}$ $m_1 = -\frac{5}{2}$ Required slope $m_2 = \frac{-1}{m} = \frac{-1}{-5/2} = \frac{2}{5}$ (c)3x + 4y = 134y = -3x + 13 $y = \frac{-3}{4} \times + \frac{13}{4}$ $m_1 = \frac{-3}{4}$ Required slope = $\frac{-1}{m_1} = \frac{4}{3}$ (d)x-4y = 84y = x - 8 $\mathbf{y} = \frac{1}{4} \times -2$ $m_1 = \frac{1}{4}$ Required slope = $\frac{-1}{m_1} = -4$ (e)9x-3y=5 3y=9x-5 $y = 3x - \frac{5}{3}$ $m_1 = 3$

Required slope = $\frac{-1}{m_1} = \frac{-1}{3}$

Answer 7.

Slope of line AB =
$$\frac{V_2 - V_1}{X_2 - X_1}$$

= $\frac{5+1}{-7-3} = -\frac{3}{5}$

Slope of line parallel to AB

= Slope of AB
=
$$-\frac{3}{5}$$

Answer 8.

Slope of line MN =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{3 - 9}{-2 - 4} = \frac{-6}{-6}$
= -1

Slope of line parallel to MN = Slope of MN = 1

Answer 9.

Slope of line PQ =
$$\frac{V_2 - V_1}{X_2 - X_1}$$

= $\frac{13 + 3}{7 - 11} = \frac{16}{-4}$
= -4

Slope of line parallel to PQ

Answer 10.

Slope of line AB

$$\Rightarrow \frac{-1}{3} = \frac{6-9}{12-x}$$
$$\Rightarrow x -12 = -9$$
$$\Rightarrow x = 3$$

Answer 11.

Slope of line PQ =
$$\frac{V_2 - V_1}{X_2 - X_1}$$

 $\Rightarrow \frac{1}{3} = \frac{m - 5}{2 + 7}$
 $\Rightarrow 3 = m - 5$
 $\Rightarrow m = 8$

Answer 12.

Slope of line AB = $\frac{y_2 - y_1}{x_2 - x_1}$

$$\Rightarrow 1 = \frac{2p+1-5}{p+2}$$
$$\Rightarrow p+2 = 2p-4$$
$$\Rightarrow 6 = p$$

Answer 13.

Slope of line PQ = $\frac{V_2 - V_1}{X_2 - X_1}$ = $\frac{5 - 1}{6 - 8}$ = $\frac{4}{-2}$ Slope = -2 Also, Slope of line PQ = tan θ \therefore tan θ = -2 θ = tan⁻¹(-2) Inclination = tan⁻¹(-2)

Answer 14.

Slope of line PQ = $\frac{V_2 - V_1}{X_2 - X_1}$ = $\frac{-5 - 7}{7 + 5} = -1$ Also, Slope of line AB = tan θ \therefore tan θ = -1 tan θ = tan (90° + 45°) θ = 135° Inclination = 135°

Answer 15.

 $(a) \times = \frac{y}{2} - 5$ y = 2x + 10 $m_1 = 2$

Slope of required line $(m_2) = m_1 = 2$

(b)
$$\times = \frac{3y}{2} + 2$$

 $3y = 2x - 4$
 $y = \frac{2}{3} \times -\frac{4}{3}$
 $m_1 = \frac{2}{3}$

Slope of required line $(m_2) = m_1 = \frac{2}{3}$

(c)
$$\frac{3x}{4} + \frac{5y}{2} = 7$$

 $10y = -3x + 28$
 $y = \frac{-3}{10}x + \frac{14}{5}$
 $m_1 = \frac{-3}{10}$

Slope of required line $(m_2) = m_1 = \frac{-3}{10}$

(d) $\frac{x}{4} + \frac{y}{3} = 1$ 3x + 4y = 12 $y = \frac{-3}{4} \times + 3$ $m_1 = \frac{-3}{4}$

Slope of required line(m₂) = m₁ = $\frac{-3}{4}$

(e)
$$\frac{2x}{5} + \frac{y}{3} = 2$$

 $6x + 5y = 30$
 $y = \frac{-6}{5} \times + 6$
 $m_1 = \frac{-6}{5}$

Slope of required line $(m_2) = m_1 = -\frac{6}{5}$

Answer 16.

When two lines are perpendicular to each other the product of their slope is -1.

i.e.
$$m_1 \times m_2 = -1$$

(a) $\frac{x}{2} + \frac{y}{3} = \frac{4}{3}$
 $3x + 2y = 8$
 $y = -\frac{3}{2}x + 4$
 $m_1 = \frac{-3}{2}$

Slope of required line $(m_2) = \frac{-1}{m_1} = \frac{2}{3}$ (b) $\times -\frac{3y}{2} + 1 = 0$ $\frac{3y}{2} = x + 1$ $y = \frac{2}{3} \times + \frac{2}{3}$ $m_1 = \frac{2}{3}$ Slope of required line $(m_2) = \frac{-1}{m_1} = \frac{-3}{2}$ (c) $\frac{3x}{4} - y = 5$ $y = \frac{3}{4}x - 5$ $m_1 = \frac{3}{4}$ Slope of required line $(m_2) = \frac{-1}{m_1} = \frac{-4}{3}$ (d) 3x - 5y = 9 $y = \frac{3}{2} \times -\frac{9}{2}$ $m_1 = \frac{3}{5}$ Slope of required line $(m_2) = \frac{-1}{m_1} = \frac{-5}{3}$ (e)4x + y = 7y = -4x + 7 $m_1 = -4$ Slope of required line $(m_2) = \frac{-1}{m_1} = \frac{1}{4}$

Answer 17.

Slope of AB
$$(m_1) = \frac{6-8}{-2-12} = \frac{-2}{-14} = \frac{1}{7}$$

Slope of BC $(m_2) = \frac{0-6}{6+2} = \frac{-3}{4}$
Slope of AC $(m_3) = \frac{0-8}{6-12} = \frac{-8}{-6} = \frac{4}{3}$
Slope of BC × Slope of AC $= m_2 \times m_3$
 $= \frac{-3}{4} \times \frac{4}{3}$
 $= -1$

 \therefore AC and BC are perpendicular to each other and ABC form a right angled triangle.

Answer 18.

Slope of PQ = $\frac{-5-1}{-1-2} = 2$ Slope of RS = $\frac{5+1}{1+2} = 2$ \therefore Slope of PQ = Slope of RS \therefore PQ || RS Also, Slope of QR = $\frac{5+5}{1+1} = 5$ Slope of SP = $\frac{-1-19}{-2-2} = 5$ Slope of QR = Slope of SP \therefore QR || SP

Answer 19.

We have to prove that ABCD is a rhombus

Slope of AC = $\frac{V_2 - V_1}{X_2 - X_1} = \frac{5 - 8}{0 - 5} = \frac{-3}{-5} = \frac{3}{5}$ Slope of BD = $\frac{V_2 - V_1}{X_2 - X_1} = \frac{9 - 4}{1 - 4} = \frac{5}{-3}$ Thus, slope of AC x slope of BD = -1 So, the diagonals AC and BC are perpendicular to each other. Hence, ABCD is a rhombus.

Answer 20.

Slope of OM = $\frac{7-5}{1-5} = \frac{2}{-4} = \frac{-1}{2}$ Slope of PN = $\frac{8-4}{4-2} = \frac{4}{2} = 2$ Slope of OM × Slope of PM = $\frac{1}{2} \times 2 = -1$

... OM and PN bisect each other at 90°. Hence, MNOP is a square.

Ex 13.3

Answer 3.

m = tan 30°,

$$= \frac{1}{\sqrt{3}}$$

Equation of line is given by,
$$\frac{y - y_1}{x - x_1} = m$$
$$\Rightarrow \frac{y - 5}{x - 2} = \frac{1}{\sqrt{3}}$$
$$\Rightarrow x - 2 = \sqrt{3}y - 5\sqrt{3}$$
$$\Rightarrow x - \sqrt{3}y - 2 + 5\sqrt{3} = 0$$
$$\Rightarrow \sqrt{3}y = x - 2 + 5\sqrt{3}$$

Answer 4.

m = tan (180° – 60°)

Equation of line is given by

$$\frac{y - y_1}{x - x_1} = m$$
$$= \frac{y - 7}{x - 3} = -\sqrt{3}$$
$$\sqrt{3}x + y - 7 - 3\sqrt{3} = 0$$

Answer 5.

m = tan 45° = 1 Equation of line, $\frac{y - y_1}{x - x_1} = m$ $\frac{y - 3}{x - 8} = 1$ $\Rightarrow x - 8 = y - 3$ $\Rightarrow x - y = 5$

Answer 6.

$$3x+4y = 11$$
$$4y = -3x + 11$$
$$y = \frac{-3}{4}x + \frac{11}{4}$$
$$m = \frac{-3}{4}$$

Equation of line, $\frac{y - y_1}{x - x_1} = m$ $\frac{y - 9}{x - 2} = \frac{-3}{4}$ 4y - 36 = -3x + 63x + 4y = 42

Answer 7.

$$3x + y = 9$$

$$y = -3x + 9$$

$$m = -3$$

Slope of required line = $\frac{1}{3}$
Equation of line is, $\frac{y - y_1}{x - x_1} = m$
 $\frac{y + 1}{x + 5} = \frac{1}{3}$
 $\Rightarrow x + 5 = 3y + 3$
 $\Rightarrow x - 3y + 2 = 0$

Answer 8.

Let I be the perpendicular bisector of AB

Slope of AB =
$$\frac{-6-6}{4+2} = \frac{-12}{6} = -2$$

Slope of l i.e slope of line perpendicular to AB = $\frac{1}{2}$

Let I intersects AB at P, $\therefore AP : PB = 1 : 1$ Coordinates of P are, $P(x_1y_1) = P\left(\frac{-2+4}{2}, \frac{6-6}{2}\right) = P(1, 0)$ Equation of I is $\frac{V-V_1}{X-X_1} = \text{slope}$ $\frac{V-0}{X-1} = \frac{1}{2}$ X-1 = 2yX-2y-1 = 0

Answer 9.

Let MN be perpendicular bisector of AB

: AP : PB = 1 : 1
Coordinates of P are,
P(a,b) = P
$$\left(\frac{3-1}{2}, \frac{5+7}{2}\right)$$
 = P(1,6)
Slope of AB = $\frac{7-5}{-1-3} = \frac{2}{-4} = \frac{-1}{2}$
Slope of MN =2

Equation of Line MN is $\frac{y - y_1}{x - x_1} = \text{slope}$ $\frac{y - 6}{x - 1} = 2$ $\Rightarrow 2x - 2 = y - 6$ $\Rightarrow 2x - y + 4 = 0$ $\Rightarrow y - 2x = 4$

Answer 10.

x + 3y = 6....(1) 2x - 3y = 12....(2)Adding (1) and (2) ,we get 3x = 18 $\Rightarrow x = 6$ And y = 0

Point of intersection of given line is (6,0)

Slope of 5x + 2y = 10 is $\frac{-5}{2}$ Slope of required line is $\frac{-5}{2}$

Equation of required line is $\frac{y - y_1}{x - x_1} = slope$

$$\frac{y-0}{x-6} = \frac{-5}{2}$$
$$\Rightarrow -5x + 30 = 2y$$
$$\Rightarrow 5x + 2y - 30 = 0$$

Answer 11.

 $x + 2y + 1 = 0 \quad ----(1)$ $2x - 3y = 12 \quad ----(2)$ (1)can be rewritten as 2x + 4y = -2...(3)(2)can be rewritten as 2x - 3y = 12...(4)Subtracting (4)from (3) we get y = -2 x = 3i.e. (3,-2)
Point of intersection of (1) and (2) is (3,-2).
Slope of 2x + 3y = 9 is $\frac{-2}{3}$ Slope of 2x + 3y = 9 is $\frac{-2}{3}$ Equation of required line is $\frac{3}{2}$ Equation of required line is $\frac{y - y_1}{x - x_1} = m$ $\frac{y + 2}{x - 3} = \frac{3}{2}$ $\Rightarrow 3x - 9 = 2y + 4$ $\Rightarrow 3x - 2y = 13$

Answer 12.

 $\frac{x}{10} + \frac{y}{5} = 14 \Rightarrow x + 2y = 140 - - - (1)$ $\frac{x}{8} + \frac{y}{6} = 15 \Rightarrow 3x + 4y = 360 - - - (2)$ (1)can be rewritten as 2x + 4y = 280....(3)(2)can be rewritten as 3x + 4y = 360....(4)Subtracting (3) from(4), we get x = 80 y = 30Point of intersection of (1) and (2) is (80,30)
Slope of x - 2y = 5 is $\frac{1}{2}$ Equation of required line is $\frac{y - y_1}{x - x_1} = m$ y = 30

$$\frac{y-30}{x-80} = -2$$

$$\Rightarrow -2x + 160 = y - 30$$

$$\Rightarrow 2x + y = 190$$

Answer 13.

Slope of px + 5y +7 = 0 is $\frac{-p}{5}$ Slope of 2y = 5x -6 is $\frac{5}{2}$

Since the lines are given perpendicular to each other, the product of their slopes must be equal to -1.

$$\frac{-p}{5} \times \frac{5}{2} = -1$$

$$\therefore p = 2$$

Answer 14.

Slope of 3x - 2y + 4 = 0 is $\frac{3}{2}$

Slope of 3x + my + 6 = 0 is $\frac{-3}{m}$

Since the lines are given parallel their slopes must be equal $\therefore \quad \frac{3}{2} = \frac{-3}{m} \Rightarrow m = -2$

Answer 15.

Slope of line py=2x + 5 is $\frac{2}{p}$

Slope of line qx +3y= 2 is $\frac{-q}{3}$

Since the lines are given parallel their slopes must be equal

$$\therefore \frac{2}{p} = \frac{-q}{3}$$
$$\therefore pq = -6$$

Answer 16.

Slope of line ay = 2x + 4 is $\frac{2}{a}$

Slope of line 4y+bx=2 is $\frac{-b}{4}$

Since the lines are given perpendicular to each other, the product of the slopes must be equal to -1.

$$\therefore \frac{2}{a} \times \frac{-b}{4} = -1$$

$$\therefore b = 2a$$

Answer 17.

Let PS be the median of the ΔPQR from P

$$\therefore RS : SQ = 1 : 1$$

Coordinates of S are,
$$S\left(\frac{8-4}{2}, \frac{3+7}{2}\right) = S(2,5)$$

Equation of PS is $\frac{y-y_1}{x-x_1} = \frac{y_2 - y_1}{x_2 = x_1}$
 $\frac{y-3}{x-5} = \frac{5-3}{2-5}$
 $\Rightarrow 2x - 10 = -3y + 9$
 $\Rightarrow 2x + 3y = 19$

Answer 18.

Let CE be the median of ∆ABC from C

 $\therefore AE : EB = 1 : 1$ By using mid-point formula Coordinates of E are, $E\left(\frac{8-2}{2}, \frac{5+1}{2}\right) = E(3,3)$ Equation of CE is $\frac{Y-Y_1}{X-X_1} = \frac{Y_2-Y_1}{X_2-X_1}$ $\frac{Y-3}{X-3} = \frac{4-3}{5-3}$ $\Rightarrow X-3 = 2Y-6$ $\Rightarrow X-2Y+3 = 0$ $\Rightarrow 2Y = X+3$

Answer 22.

$$y = \frac{y}{3} + \frac{y}{3} +$$

Let A(x,0) divides PQ is the ratio k:1

Using section formula,

Coordinates of A(x, 0) =
$$\left(\frac{3k}{k+1}, \frac{7k+4}{k+1}\right)$$

Equating we get

$$\frac{7k+4}{k+1}=0$$

7k + 4 = 0

Answer 25.

The altitude through X is perpendicular to YZ.

Slope of
$$YZ = \frac{-4-4}{7+5} = \frac{-2}{3}$$

 $\Rightarrow m = \text{Slope of } YZ = \frac{-2}{3}$
Slope line perpendicular to YZ will be
 $\frac{-1}{m} = \frac{3}{2}$
This line passes through X(4,9)
Using the point slope formula,
 $y - y_1 = m(x - x_1)$
 $y - 9 = \frac{3}{2}(x - 4)$
 $\Rightarrow 2y - 18 = 3x - 12$
 $\Rightarrow 2y = 3x + 6$