

- 2 Dimensional or 2-D shapes are plane shapes having length and breadth ; ex triangle, square, circle
- 3-dimensional or 3- D shapes are solid objects that occupy space and have length, breadth and height (depth): cube, cuboid, cone ,sphere
- 3-D objects look differently from different positions, so they can be drawn from different perspectives
- Hence as 3-D object has different views like front view, side view and top view

Different Views of a 3-D object

Object	Tonviow	Frontiviow	Sidoviow
Object			Side view

- Map depicts only location of object/place in relation to other objects/places
- While drawing a picture, we try to represent it exactly as seen from the perspective, with all fine details but perspective is not important for map
- Map makes use of symbols and the distances mentioned are proportional to the actual distances on the ground.
- A proper scale is chosen to show the reduction in real distances/ dimension proportionately to distances/dimensions on paper
- There is no reference concept in map ; objects that are closer to the observer are of the same size as those that are farther away

A net is a pattern of two-dimensions that can be folded to make a three dimensional figure

__on folding

Polyhodrons:		Briem	Duramid
 Polyhedrons: Polyhedrons are 3-D objects or solids made up of polygonal regions called as faces. Faces (F) meet at line segments called as edges (E) Edges meet at points called as vertices (V) Diagonals connect two vertices that do not lie on the same face. Regular polyhedron or platonic solids : faces are made up of regular polygons and same number of faces meet at each vertex Ex. Cube, tetrahedron, octahedron 2 important members of polyhedron family are pyramids and prisms 		 a polyhedron whose base and top are congruent polygons and other faces (lateral faces) are parallelograms in shape Prism has2 bases 	 polyhedron whose base is polygon and lateral faces are triangles with a common vertex model of a pyramid: join all the corners of a polygon to a point not in its plane
Examples of polyhedrons Cube Vertex Face Edge	Cone	Pentagonal prism	Pyramid has one base Pentagonal pyramid pyramid
Triangular prism Cuboid	Sphere Cylinder	Eulers formula: for polyhedron : F-	+ V = E + 2
 The above also represent convex polyhedrons: all diagonals are in the interior f the polyhedron Even if one diagonal is in the exterior ,it is a non-convex polyhedron 	Examples of non convex polyhedrons	(a) (b) S. No Polyhedron F V F (a) Tetrahedron 4 4 (b) Cube 6 8 (c) Pentagonal 7 10 prism 1	(c) + V E F + V -E 8 6 2 14 12 2 17 15 2