8.6 Polarisation ## Elliptical polarisation^a | Elliptical polarisation | $\boldsymbol{E} = (E_{0x}, E_{0y} e^{\mathbf{i}\delta}) e^{\mathbf{i}\delta}$ | (8.80) | |---------------------------------|---|----------------------| | Polarisation angle ^b | $\tan 2\alpha = \frac{2E_{0x}E_{0y}}{E_{0x}^2 - E_{0y}^2}$ | $-\cos\delta$ (8.81) | | Ellipticity ^c | $e = \frac{a - b}{a}$ | (8.82) | | Malus's law ^d | $I(\theta) = I_0 \cos^2 \theta$ | (8.83) | electric field E wavevector propagation axis z angular frequency × time E_{0x} x amplitude of **E** E_{0v} y amplitude of **E** relative phase of E_v with respect to E_x polarisation angle ellipticity semi-major axis semi-minor axis $I(\theta)$ transmitted intensity incident intensity I_0 polariser-analyser angle ^aSee the introduction (page 161) for a discussion of sign and handedness conventions. ## Jones vectors and matrices | Normalised electric field ^a | $\boldsymbol{E} = \begin{pmatrix} E_x \\ E_y \end{pmatrix}; \boldsymbol{E} = 1$ | (8.84) | E electric field E_x x component of E E_y y component of E | |--|---|---|---| | Example vectors: | $E_{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad E_{45} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -\mathbf{i} \end{pmatrix} \qquad E_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -\mathbf{i} \end{pmatrix}$ | V - () | E_{45} 45° to x axis
$E_{\rm r}$ right-hand circular
$E_{\rm l}$ left-hand circular | | Jones matrix | $E_{\rm t} = \mathbf{A}E_{\rm i}$ | (8.85) | $egin{array}{ll} E_{ m t} & { m transmitted vector} \\ E_{ m i} & { m incident vector} \\ { m A} & { m Jones \ matrix} \end{array}$ | | Example matric | es: | | | | Linear polariser | $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ | Linear polariser | $y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ | | Linear polariser at 45° $\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ | | Linear polariser at -45° $\frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ | | | Right circular p | polariser $\frac{1}{2} \begin{pmatrix} 1 & \mathbf{i} \\ -\mathbf{i} & 1 \end{pmatrix}$ | Left circular polar | riser $\frac{1}{2} \begin{pmatrix} 1 & -\mathbf{i} \\ \mathbf{i} & 1 \end{pmatrix}$ | | $\lambda/4$ plate (fast | $ e^{\mathbf{i}\pi/4} \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{i} \end{pmatrix} $ | $\lambda/4$ plate (fast $\perp x$ | $e^{\mathbf{i}\pi/4} \begin{pmatrix} 1 & 0 \\ 0 & -\mathbf{i} \end{pmatrix}$ | ^aKnown as the "normalised Jones vector." ^bAngle between ellipse major axis and x axis. Sometimes the polarisation angle is defined as $\pi/2-\alpha$. ^cThis is one of several definitions for ellipticity. ^dTransmission through skewed polarisers for unpolarised incident light. ## Stokes parameters^a ^aUsing the convention that right-handed circular polarisation corresponds to a clockwise rotation of the electric field in a given plane when looking towards the source. The propagation direction in the diagram is out of the plane. The parameters I, Q, U, and V are sometimes denoted s_0 , s_1 , s_2 , and s_3 , and other nomenclatures exist. There is no generally accepted definition – often the parameters are scaled to be dimensionless, with $s_0 = 1$, or to represent power flux through a plane \bot the beam, i.e., $I = (\langle E_x^2 \rangle + \langle E_y^2 \rangle)/Z_0$ etc., where Z_0 is the impedance of free space. ^bThe axial ratio is positive for right-handed polarisation and negative for left-handed polarisation using our definitions.