8.3 Fraunhofer diffraction ## **Gratings**^a ^aUnless stated otherwise, the illumination is normal to the grating. $^{^{}b}$ Two narrow slits separated by D. ^cThe condition is for Bragg reflection, with $\theta_n = \theta_i$. ## Aperture diffraction ^aThe Fraunhofer integral. ^bNote that $\operatorname{sinc} x = (\sin \pi x)/(\pi x)$. ^cThe central maximum is known as the "Airy disk." ^dThe "Rayleigh resolution criterion" states that two point sources of equal intensity can just be resolved with diffraction-limited optics if separated in angle by $1.22\lambda/D$. ^ePlane-wave illumination.