7.7 Transmission lines and waveguides

Transmission line relations

Transmission file re	ent tions		
Loss-free transmission line equations	$\frac{\partial V}{\partial x} = -L \frac{\partial I}{\partial t}$ $\frac{\partial I}{\partial x} = -C \frac{\partial V}{\partial t}$	(7.170) (7.171)	 V potential difference across line I current in line L inductance per unit length C capacitance per unit length
Wave equation for a lossless transmission line	$\frac{1}{LC} \frac{\partial^2 V}{\partial x^2} = \frac{\partial^2 V}{\partial t^2}$ $\frac{1}{LC} \frac{\partial^2 I}{\partial x^2} = \frac{\partial^2 I}{\partial t^2}$	(7.172) (7.173)	x distance along line t time
Characteristic impedance of lossless line	$Z_{\rm c} = \sqrt{\frac{L}{C}}$	(7.174)	$Z_{\rm c}$ characteristic impedance
Characteristic impedance of lossy line	$\mathbf{Z}_{c} = \sqrt{\frac{R + \mathbf{i}\omega L}{G + \mathbf{i}\omega C}}$	(7.175)	R resistance per unit length of conductor G conductance per unit length of insulator ω angular frequency
Wave speed along a lossless line	$v_{\rm p} = v_{\rm g} = \frac{1}{\sqrt{LC}}$	(7.176)	$v_{\rm p}$ phase speed $v_{\rm g}$ group speed
Input impedance of a terminated lossless line	$Z_{\text{in}} = Z_{\text{c}} \frac{Z_{\text{t}} \cos kl - \mathbf{i} Z_{\text{c}} \sin kl}{Z_{\text{c}} \cos kl - \mathbf{i} Z_{\text{t}} \sin kl}$ $= Z_{\text{c}}^{2} / Z_{\text{t}} \text{if } l = \lambda/4$	(7.177) (7.178)	$m{Z}_{ m in}$ (complex) input impedance $m{Z}_{ m t}$ (complex) terminating impedance $m{k}$ wavenumber (= $2\pi/\lambda$)
Reflection coefficient from a terminated line	$r = \frac{Z_{\rm t} - Z_{\rm c}}{Z_{\rm t} + Z_{\rm c}}$	(7.179)	l distance from termination r (complex) voltage reflection coefficient
Line voltage standing wave ratio	$VSWR = \frac{1 + r }{1 - r }$	(7.180)	

${\bf Transmission\ line\ impedances}^a$

Coaxial line	$Z_{\rm c} = \sqrt{\frac{\mu}{4\pi^2 \epsilon}} \ln \frac{b}{a} \simeq \frac{60}{\sqrt{\epsilon_{\rm r}}} \ln \frac{b}{a}$	(7.181)	1 -	characteristic impedance (Ω) radius of inner conductor radius of outer conductor
	v		ϵ	permittivity (= $\epsilon_0 \epsilon_r$)
Open wire feeder	$Z_{\rm c} = \sqrt{\frac{\mu}{\pi^2 \epsilon}} \ln \frac{l}{r} \simeq \frac{120}{\sqrt{\epsilon_{\rm r}}} \ln \frac{l}{r}$	(7.182)		permeability (= $\mu_0 \mu_r$)
			r	radius of wires
			l	distance between wires $(\gg r)$
Paired strip	$Z_{\rm c} = \sqrt{\frac{\mu}{\epsilon}} \frac{d}{w} \simeq \frac{377}{\sqrt{\epsilon_{\rm r}}} \frac{d}{w}$	(7.183)	d	strip separation
			w	strip width $(\gg d)$
Microstrip line	$Z_{\rm c} \simeq \frac{377}{\sqrt{\epsilon_{\rm r}}[(w/h) + 2]}$	(7.184)	h	height above earth plane $(\ll w)$
_	$\sqrt{\epsilon_{\rm r}[(w/h)+2]}$, , ,		(« w)

^aFor lossless lines.

Waveguides^a

Waveguide equation	$k_{\rm g}^2 = \frac{\omega^2}{c^2} - \frac{m^2 \pi^2}{a^2} - \frac{n^2 \pi^2}{b^2}$	(7.185)	kg ω a b m,n	wavenumber in guide angular frequency guide height guide width mode indices with respect to a and b (integers) speed of light
Guide cutoff frequency	$v_{\rm c} = c\sqrt{\left(\frac{m}{2a}\right)^2 + \left(\frac{n}{2b}\right)^2}$	(7.186)	ν _c ω _c	cutoff frequency $2\pi v_c$
Phase velocity above cutoff	$v_{\rm p} = \frac{c}{\sqrt{1 - (v_{\rm c}/v)^2}}$	(7.187)	v _p	phase velocity frequency
Group velocity above cutoff	$v_{\rm g} = c^2/v_{\rm p} = c\sqrt{1 - (v_{\rm c}/v)^2}$	(7.188)	$v_{ m g}$	group velocity
Wave impedances ^b	$Z_{\text{TM}} = Z_0 \sqrt{1 - (v_c/v)^2}$ $Z_{\text{TE}} = Z_0 / \sqrt{1 - (v_c/v)^2}$	(7.189) (7.190)	$Z_{ m TM}$ $Z_{ m TE}$ Z_0	wave impedance for transverse magnetic modes wave impedance for transverse electric modes impedance of free space $(=\sqrt{\mu_0/\epsilon_0})$

Field solutions for TE_{mn} modes^c

$$B_{x} = \frac{\mathbf{i}k_{g}c^{2}}{\omega_{c}^{2}} \frac{\partial B_{z}}{\partial x} \qquad E_{x} = \frac{\mathbf{i}\omega c^{2}}{\omega_{c}^{2}} \frac{\partial B_{z}}{\partial y}$$

$$B_{y} = \frac{\mathbf{i}k_{g}c^{2}}{\omega_{c}^{2}} \frac{\partial B_{z}}{\partial y} \qquad E_{y} = \frac{-\mathbf{i}\omega c^{2}}{\omega_{c}^{2}} \frac{\partial B_{z}}{\partial x}$$

$$B_{z} = B_{0}\cos\frac{m\pi x}{a}\cos\frac{n\pi y}{b} \qquad E_{z} = 0$$

Field solutions for TM_{mn} modes^c

$$E_{x} = \frac{\mathbf{i}k_{g}c^{2}}{\omega_{c}^{2}} \frac{\partial E_{z}}{\partial x} \qquad B_{x} = \frac{-\mathbf{i}\omega}{\omega_{c}^{2}} \frac{\partial E_{z}}{\partial y}$$

$$E_{y} = \frac{\mathbf{i}k_{g}c^{2}}{\omega_{c}^{2}} \frac{\partial E_{z}}{\partial y} \qquad B_{y} = \frac{\mathbf{i}\omega}{\omega_{c}^{2}} \frac{\partial E_{z}}{\partial x}$$

$$E_{z} = E_{0}\sin\frac{m\pi x}{a}\sin\frac{n\pi y}{b} \qquad B_{z} = 0$$

^aEquations are for lossless waveguides with rectangular cross sections and no dielectric.

^bThe ratio of the electric field to the magnetic field strength in the xy plane.

^cBoth TE and TM modes propagate in the z direction with a further factor of $\exp[i(k_g z - \omega t)]$ on all components. B_0 and E_0 are the amplitudes of the z components of magnetic flux density and electric field respectively.