7.6 LCR circuits

LCR definitions

LCK delillitions					
Current	$I = \frac{\mathrm{d}Q}{\mathrm{d}t}$	(7.139)	I Q	current charge	
Ohm's law	V = IR	(7.140)	R V I	resistance potential difference over <i>R</i> current through <i>R</i>	
Ohm's law (field form)	$J = \sigma E$	(7.141)	<i>J E</i> σ	current density electric field conductivity	
Resistivity	$\rho = \frac{1}{\sigma} = \frac{RA}{l}$	(7.142)	ho A	resistivity area of face (I is normal to face) length	
Capacitance	$C = \frac{Q}{V}$	(7.143)	C V	capacitance potential difference across C	
Current through capacitor	$I = C \frac{\mathrm{d}V}{\mathrm{d}t}$	(7.144)	I t	current through C time	
Self-inductance	$L = \frac{\Phi}{I}$	(7.145)	Φ <i>I</i>	total linked flux current through inductor	
Voltage across inductor	$V = -L \frac{\mathrm{d}I}{\mathrm{d}t}$	(7.146)	V	potential difference over L	
Mutual inductance	$L_{12} = \frac{\Phi_1}{I_2} = L_{21}$	(7.147)	Φ_1 L_{12} I_2	total flux from loop 2 linked by loop 1 mutual inductance current through loop 2	
Coefficient of coupling	$ L_{12} = k\sqrt{L_1L_2}$	(7.148)	k	coupling coefficient between L_1 and L_2 (≤ 1)	
Linked magnetic flux through a coil	$\Phi = N\phi$	(7.149)	Φ N ϕ	linked flux number of turns around ϕ flux through area of turns	

Resonant LCR circuits

Resonant L	CR circuits				series
Phase resonant frequency ^a	$\omega_0^2 = \begin{cases} 1/LC & \text{(series)} \\ 1/LC - R^2/L^2 & \text{(parallel)} \end{cases} $ (7	7.150)	$egin{array}{c} \omega_0 \ L \ C \ R \end{array}$	resonant angular frequency inductance capacitance resistance	R L C parallel
Tuning ^b	$\frac{\delta\omega}{\omega_0} = \frac{1}{Q} = \frac{R}{\omega_0 L} \tag{7}$	7.151)	$\delta \omega$ Q	half-power bandwidth quality factor	
Quality factor	$Q = 2\pi \frac{\text{stored energy}}{\text{energy lost per cycle}} \tag{7}$	7.152)			

Energy in capacitors, inductors, and resistors

			U	stored energy
Energy stored in a capacitor	$U = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C}$	(7.153)	C	capacitance
			Q	charge
			V	potential difference
Energy stored in an	1 1 1 Φ^2		L	inductance
inductor	$U = \frac{1}{2}LI^2 = \frac{1}{2}\Phi I = \frac{1}{2}\frac{\Phi^2}{I}$	(7.154)	Φ	linked magnetic flux
muuctoi	2 2 2 L		I	current
Power dissipated in	V^2		W	nower dissinated
a resistor ^a (Joule's	$W = IV = I^2R = \frac{r}{R}$	(7.155)	R	power dissipated resistance
law)	K		А	resistance
	€0€r		τ	relaxation time
Relaxation time	$\tau = \frac{\epsilon_0 \epsilon_{\rm r}}{\sigma}$	(7.156)	ϵ_{r}	relative permittivity
			σ	conductivity

^aThis is d.c., or instantaneous a.c., power.

Electrical impedance

Impedances in series	$oldsymbol{Z}_{ ext{tot}} = \sum_n oldsymbol{Z}_n$	(7.157)
Impedances in parallel	$\boldsymbol{Z}_{\text{tot}} = \left(\sum_{n} \boldsymbol{Z}_{n}^{-1}\right)^{-1}$	(7.158)
Impedance of capacitance	$Z_{\rm C} = -\frac{\mathbf{i}}{\omega C}$	(7.159)
Impedance of inductance	$Z_{\mathrm{L}}\!=\!\mathbf{i}\omega L$	(7.160)
Impedance: Z	Capacitance: C	
Inductance: L	Resistance: $R = \text{Re}[Z]$	
Conductance: $G = 1/R$	Reactance: $X = Im[Z]$	
Admittance: $Y = 1/Z$	Susceptance: $S = 1/X$	

^aAt which the impedance is purely real. ^bAssuming the capacitor is purely reactive. If L and R are parallel, then $1/Q = \omega_0 L/R$.

Kirchhoff's laws

Current law	$\sum_{\text{node}} I_i = 0$	(7.161)	I_i	currents impinging on node
Voltage law	$\sum_{\text{loop}} V_i = 0$	(7.162)	V_i	potential differences around loop

${\bf Transformers}^a$

^aIdeal, with a coupling constant of 1 between loss-free windings.

Star-delta transformation

