Fields associated with media 7.4

Polarisation

Polarisation			
Definition of electric dipole moment	p = qa	(7.80)	$ \begin{array}{ccc} \pm q & \text{end charges} \\ a & \text{charge separation} \\ & \text{vector (from - to +)} \end{array} $
Generalised electric dipole moment	$\mathbf{p} = \int_{\text{volume}} \mathbf{r}' \rho \mathrm{d}\tau'$	(7.81)	p dipole moment ρ charge density $d\tau'$ volume element r' vector to $d\tau'$
Electric dipole potential	$\phi(\mathbf{r}) = \frac{\mathbf{p} \cdot \mathbf{r}}{4\pi\epsilon_0 r^3}$	(7.82)	ϕ dipole potential r vector from dipole ϵ_0 permittivity of free space
Dipole moment per unit volume (polarisation) ^a	P = np	(7.83)	P polarisation n number of dipoles per unit volume
Induced volume charge density	$\nabla \cdot \boldsymbol{P} = -\rho_{\mathrm{ind}}$	(7.84)	$ ho_{ m ind}$ volume charge density
Induced surface charge density	$\sigma_{\rm ind} = \boldsymbol{P} \cdot \hat{\boldsymbol{s}}$	(7.85)	 σ_{ind} surface charge density â unit normal to surface
Definition of electric displacement	$D = \epsilon_0 E + P$	(7.86)	D electric displacement E electric field
Definition of electric susceptibility	$P = \epsilon_0 \chi_E E$	(7.87)	χ_E electrical susceptibility (may be a tensor)
Definition of relative permittivity ^b	$\epsilon_{r} = 1 + \chi_{E}$ $\mathbf{D} = \epsilon_{0} \epsilon_{r} \mathbf{E}$ $= \epsilon \mathbf{E}$	(7.88) (7.89) (7.90)	$\epsilon_{ m r}$ relative permittivity ϵ permittivity
Atomic polarisability ^c	$p = \alpha E_{loc}$	(7.91)	$lpha$ polarisability $m{E}_{ m loc}$ local electric field
Depolarising fields	$\boldsymbol{E}_{\mathrm{d}} = -\frac{N_{\mathrm{d}}\boldsymbol{P}}{\epsilon_0}$	(7.92)	$E_{\rm d}$ depolarising field $N_{\rm d}$ depolarising factor =1/3 (sphere) =1 (thin slab \perp to P) =0 (thin slab \parallel to P) =1/2 (long circular cylinder, axis \perp to P)
Clausius–Mossotti equation ^d	$\frac{n\alpha}{3\epsilon_0} = \frac{\epsilon_r - 1}{\epsilon_r + 2}$	(7.93)	

^aAssuming dipoles are parallel. The equivalent of Equation (7.112) holds for a hot gas of electric dipoles.

^bRelative permittivity as defined here is for a linear isotropic medium.

^cThe polarisability of a conducting sphere radius a is $\alpha = 4\pi\epsilon_0 a^3$. The definition $p = \alpha\epsilon_0 E_{loc}$ is also used.

^dWith the substitution $\eta^2 = \epsilon_r$ [cf. Equation (7.195) with $\mu_r = 1$] this is also known as the "Lorentz–Lorenz formula."

Magnetisation

Magnetisation					
Definition of magnetic dipole moment	$\mathrm{d}\mathbf{m} = I \mathrm{d}\mathbf{s}$	(7.94)	dm I ds	dipole moment loop current loop area (right-hand sense with respect to loop current)	
Generalised magnetic dipole moment	$m = \frac{1}{2} \int_{\text{volume}} r' \times J d\tau'$	(7.95)	$egin{array}{c} m{m} \\ m{J} \\ \mathrm{d} au' \\ m{r}' \end{array}$	dipole moment current density volume element vector to $d\tau'$	
Magnetic dipole (scalar) potential	$\phi_{\rm m}(\mathbf{r}) = \frac{\mu_0 \mathbf{m} \cdot \mathbf{r}}{4\pi r^3}$	(7.96)	$\phi_{ m m}$ $m{r}$ μ_0	magnetic scalar potential vector from dipole permeability of free space	
Dipole moment per unit volume (magnetisation) ^a	M = nm	(7.97)	M n	magnetisation number of dipoles per unit volume	
Induced volume current density	$\boldsymbol{J}_{\mathrm{ind}} = \nabla \times \boldsymbol{M}$	(7.98)	$oldsymbol{J}_{ ext{ind}}$	volume current density (i.e., A m ⁻²)	
Induced surface current density	$oldsymbol{j}_{ ext{ind}} = oldsymbol{M} imes \hat{s}$	(7.99)	$oldsymbol{j}_{ ext{ind}}$	surface current density (i.e., A m ⁻¹) unit normal to surface	
Definition of magnetic field strength, <i>H</i>	$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$	(7.100)	B H	magnetic flux density magnetic field strength	
	$M = \chi_H H$	(7.101)			
Definition of magnetic susceptibility	$=\frac{\chi_B \mathbf{B}}{\mu_0}$	(7.102)	χн	magnetic susceptibility. χ_B is also used (both may	
susceptionity	$\chi_B = \frac{\chi_H}{1 + \chi_H}$	(7.103)		be tensors)	
	$\boldsymbol{B} = \mu_0 \mu_{\mathrm{r}} \boldsymbol{H}$	(7.104)			
Definition of relative	$=\mu H$	(7.105)	μ_{r}	relative permeability	
permeability ^b	$\mu_{\rm r} = 1 + \chi_H$	(7.106)	μ	permeability	
	$=\frac{1}{1-\chi_B}$	(7.107)			

^aAssuming all the dipoles are parallel. See Equation (7.112) for a classical paramagnetic gas and page 101 for the quantum generalisation.

^bRelative permeability as defined here is for a linear isotropic medium.

Paramagnetism and diamagnetism

Diamagnetic moment of an atom	$\boldsymbol{m} = -\frac{e^2}{6m_{\rm e}} Z \langle r^2 \rangle \boldsymbol{B}$	(7.108)	$egin{array}{c} m{m} \\ \langle r^2 \rangle \\ m{Z} \\ m{B} \\ m_{\mathrm{e}} \\ -e \\ \end{array}$	magnetic moment mean squared orbital radius (of all electrons) atomic number magnetic flux density electron mass electronic charge
Intrinsic electron magnetic moment ^a	$m \simeq -\frac{e}{2m_e} g J$	(7.109)	J g	total angular momentum Landé g-factor (=2 for spin, =1 for orbital momentum)
Langevin function	$\mathcal{L}(x) = \coth x - \frac{1}{x}$ $\simeq x/3 \qquad (x \lesssim 1)$	(7.110) (7.111)	$\mathscr{L}(x)$	Langevin function
Classical gas paramagnetism $(J \gg \hbar)$	$\langle M \rangle = n m_0 \mathcal{L} \left(\frac{m_0 B}{k T} \right)$	(7.112)	$\left \begin{array}{c} \langle M \rangle \\ m_0 \end{array}\right $	apparent magnetisation magnitude of magnetic dipole moment dipole number density
Curie's law	$\chi_H = \frac{\mu_0 n m_0^2}{3kT}$	(7.113)	Τ k χн	temperature Boltzmann constant magnetic susceptibility
Curie–Weiss law	$\chi_H = \frac{\mu_0 n m_0^2}{3k(T - T_c)}$	(7.114)	μ_0 $T_{ m c}$	permeability of free space Curie temperature

^aSee also page 100.

Boundary conditions for E, D, B, and H^a

Parallel component of the electric field	E_{\parallel} continuous	(7.115)		component parallel to interface	
Perpendicular component of the magnetic flux density	B_{\perp} continuous	(7.116)	Τ	component perpendicular to interface	
Electric displacement ^b	$\hat{\boldsymbol{s}} \cdot (\boldsymbol{D}_2 - \boldsymbol{D}_1) = \sigma$	(7.117)	$m{D}_{1,2}$ $\hat{m{s}}$ σ	electrical displacements in media 1 & 2 unit normal to surface, directed $1 \rightarrow 2$ surface density of free charge	(1)
Magnetic field strength ^c	$\hat{\mathbf{s}} \times (\boldsymbol{H}_2 - \boldsymbol{H}_1) = \boldsymbol{j}_s$	(7.118)	$oldsymbol{H}_{1,2}$ $oldsymbol{j}_s$	magnetic field strengths in media 1 & 2 surface current per unit width	

 $[^]a$ At the plane surface between two uniform media. b If $\sigma = 0$, then D_{\perp} is continuous. c If $j_s = 0$ then H_{\parallel} is continuous.

