Fields associated with media 7.4 #### Polarisation | Polarisation | | | | |---|---|----------------------------|--| | Definition of electric dipole moment | p = qa | (7.80) | $ \begin{array}{ccc} \pm q & \text{end charges} \\ a & \text{charge separation} \\ & \text{vector (from - to +)} \end{array} $ | | Generalised electric dipole moment | $\mathbf{p} = \int_{\text{volume}} \mathbf{r}' \rho \mathrm{d}\tau'$ | (7.81) | p dipole moment ρ charge density $d\tau'$ volume element r' vector to $d\tau'$ | | Electric dipole potential | $\phi(\mathbf{r}) = \frac{\mathbf{p} \cdot \mathbf{r}}{4\pi\epsilon_0 r^3}$ | (7.82) | ϕ dipole potential r vector from dipole ϵ_0 permittivity of free space | | Dipole moment per unit volume (polarisation) ^a | P = np | (7.83) | P polarisation n number of dipoles per unit volume | | Induced volume charge density | $\nabla \cdot \boldsymbol{P} = -\rho_{\mathrm{ind}}$ | (7.84) | $ ho_{ m ind}$ volume charge density | | Induced surface charge density | $\sigma_{\rm ind} = \boldsymbol{P} \cdot \hat{\boldsymbol{s}}$ | (7.85) | σ_{ind} surface charge density â unit normal to surface | | Definition of electric displacement | $D = \epsilon_0 E + P$ | (7.86) | D electric displacement E electric field | | Definition of electric susceptibility | $P = \epsilon_0 \chi_E E$ | (7.87) | χ_E electrical susceptibility (may be a tensor) | | Definition of relative permittivity ^b | $\epsilon_{r} = 1 + \chi_{E}$ $\mathbf{D} = \epsilon_{0} \epsilon_{r} \mathbf{E}$ $= \epsilon \mathbf{E}$ | (7.88)
(7.89)
(7.90) | $\epsilon_{ m r}$ relative permittivity ϵ permittivity | | Atomic polarisability ^c | $p = \alpha E_{loc}$ | (7.91) | $lpha$ polarisability $m{E}_{ m loc}$ local electric field | | Depolarising fields | $\boldsymbol{E}_{\mathrm{d}} = -\frac{N_{\mathrm{d}}\boldsymbol{P}}{\epsilon_0}$ | (7.92) | $E_{\rm d}$ depolarising field $N_{\rm d}$ depolarising factor =1/3 (sphere) =1 (thin slab \perp to P) =0 (thin slab \parallel to P) =1/2 (long circular cylinder, axis \perp to P) | | Clausius–Mossotti equation ^d | $\frac{n\alpha}{3\epsilon_0} = \frac{\epsilon_r - 1}{\epsilon_r + 2}$ | (7.93) | | ^aAssuming dipoles are parallel. The equivalent of Equation (7.112) holds for a hot gas of electric dipoles. ^bRelative permittivity as defined here is for a linear isotropic medium. ^cThe polarisability of a conducting sphere radius a is $\alpha = 4\pi\epsilon_0 a^3$. The definition $p = \alpha\epsilon_0 E_{loc}$ is also used. ^dWith the substitution $\eta^2 = \epsilon_r$ [cf. Equation (7.195) with $\mu_r = 1$] this is also known as the "Lorentz–Lorenz formula." ## Magnetisation | Magnetisation | | | | | | |--|---|---------|---|--|--| | Definition of magnetic dipole moment | $\mathrm{d}\mathbf{m} = I \mathrm{d}\mathbf{s}$ | (7.94) | dm
I
ds | dipole moment
loop current
loop area (right-hand
sense with respect to
loop current) | | | Generalised
magnetic dipole
moment | $m = \frac{1}{2} \int_{\text{volume}} r' \times J d\tau'$ | (7.95) | $egin{array}{c} m{m} \\ m{J} \\ \mathrm{d} au' \\ m{r}' \end{array}$ | dipole moment current density volume element vector to $d\tau'$ | | | Magnetic dipole (scalar) potential | $\phi_{\rm m}(\mathbf{r}) = \frac{\mu_0 \mathbf{m} \cdot \mathbf{r}}{4\pi r^3}$ | (7.96) | $\phi_{ m m}$ $m{r}$ μ_0 | magnetic scalar
potential
vector from dipole
permeability of free
space | | | Dipole moment per
unit volume
(magnetisation) ^a | M = nm | (7.97) | M
n | magnetisation
number of dipoles
per unit volume | | | Induced volume current density | $\boldsymbol{J}_{\mathrm{ind}} = \nabla \times \boldsymbol{M}$ | (7.98) | $oldsymbol{J}_{ ext{ind}}$ | volume current
density (i.e., A m ⁻²) | | | Induced surface current density | $oldsymbol{j}_{ ext{ind}} = oldsymbol{M} imes \hat{s}$ | (7.99) | $oldsymbol{j}_{ ext{ind}}$ | surface current
density (i.e., A m ⁻¹)
unit normal to
surface | | | Definition of magnetic field strength, <i>H</i> | $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$ | (7.100) | B
H | magnetic flux density
magnetic field
strength | | | | $M = \chi_H H$ | (7.101) | | | | | Definition of magnetic susceptibility | $=\frac{\chi_B \mathbf{B}}{\mu_0}$ | (7.102) | χн | magnetic susceptibility. χ_B is also used (both may | | | susceptionity | $\chi_B = \frac{\chi_H}{1 + \chi_H}$ | (7.103) | | be tensors) | | | | $\boldsymbol{B} = \mu_0 \mu_{\mathrm{r}} \boldsymbol{H}$ | (7.104) | | | | | Definition of relative | $=\mu H$ | (7.105) | μ_{r} | relative permeability | | | permeability ^b | $\mu_{\rm r} = 1 + \chi_H$ | (7.106) | μ | permeability | | | | $=\frac{1}{1-\chi_B}$ | (7.107) | | | | ^aAssuming all the dipoles are parallel. See Equation (7.112) for a classical paramagnetic gas and page 101 for the quantum generalisation. ^bRelative permeability as defined here is for a linear isotropic medium. ### Paramagnetism and diamagnetism | Diamagnetic moment of an atom | $\boldsymbol{m} = -\frac{e^2}{6m_{\rm e}} Z \langle r^2 \rangle \boldsymbol{B}$ | (7.108) | $egin{array}{c} m{m} \\ \langle r^2 \rangle \\ m{Z} \\ m{B} \\ m_{\mathrm{e}} \\ -e \\ \end{array}$ | magnetic moment mean squared orbital radius (of all electrons) atomic number magnetic flux density electron mass electronic charge | |---|---|--------------------|---|--| | Intrinsic electron magnetic moment ^a | $m \simeq -\frac{e}{2m_e} g J$ | (7.109) | J
g | total angular momentum Landé g-factor (=2 for spin, =1 for orbital momentum) | | Langevin function | $\mathcal{L}(x) = \coth x - \frac{1}{x}$ $\simeq x/3 \qquad (x \lesssim 1)$ | (7.110)
(7.111) | $\mathscr{L}(x)$ | Langevin function | | Classical gas paramagnetism $(J \gg \hbar)$ | $\langle M \rangle = n m_0 \mathcal{L} \left(\frac{m_0 B}{k T} \right)$ | (7.112) | $\left \begin{array}{c} \langle M \rangle \\ m_0 \end{array}\right $ | apparent magnetisation
magnitude of magnetic dipole
moment
dipole number density | | Curie's law | $\chi_H = \frac{\mu_0 n m_0^2}{3kT}$ | (7.113) | Τ
k
χн | temperature Boltzmann constant magnetic susceptibility | | Curie–Weiss law | $\chi_H = \frac{\mu_0 n m_0^2}{3k(T - T_c)}$ | (7.114) | μ_0 $T_{ m c}$ | permeability of free space
Curie temperature | ^aSee also page 100. # Boundary conditions for E, D, B, and H^a | Parallel component of the electric field | E_{\parallel} continuous | (7.115) | | component parallel to interface | | |--|--|---------|---------------------------------------|--|-----| | Perpendicular component of the magnetic flux density | B_{\perp} continuous | (7.116) | Τ | component
perpendicular to
interface | | | Electric displacement ^b | $\hat{\boldsymbol{s}} \cdot (\boldsymbol{D}_2 - \boldsymbol{D}_1) = \sigma$ | (7.117) | $m{D}_{1,2}$ $\hat{m{s}}$ σ | electrical displacements
in media 1 & 2
unit normal to surface,
directed $1 \rightarrow 2$
surface density of free
charge | (1) | | Magnetic field strength ^c | $\hat{\mathbf{s}} \times (\boldsymbol{H}_2 - \boldsymbol{H}_1) = \boldsymbol{j}_s$ | (7.118) | $oldsymbol{H}_{1,2}$ $oldsymbol{j}_s$ | magnetic field strengths
in media 1 & 2
surface current per unit
width | | $[^]a$ At the plane surface between two uniform media. b If $\sigma = 0$, then D_{\perp} is continuous. c If $j_s = 0$ then H_{\parallel} is continuous.