
7.4 Fields associated with media

Polarisation

Definition of electric
dipole moment

p=qa (7.80)
±q end charges

a charge separation
vector (from − to +)

�− +p

Generalised electric
dipole moment

p=

∫
volume

r′ρ dτ′ (7.81)

p dipole moment

ρ charge density

dτ′ volume element

r′ vector to dτ′

Electric dipole
potential

φ(r)=
p ·r

4πε0r3
(7.82)

φ dipole potential

r vector from dipole

ε0 permittivity of free
space

Dipole moment per
unit volume
(polarisation)a

P=np (7.83)
P polarisation

n number of dipoles per
unit volume

Induced volume
charge density

∇ ·P=−ρ ind (7.84) ρ ind volume charge density

Induced surface
charge density

σind =P · ŝ (7.85)
σind surface charge density

ŝ unit normal to surface

Definition of electric
displacement

D= ε0E+P (7.86)
D electric displacement

E electric field

Definition of electric
susceptibility

P= ε0χEE (7.87) χE electrical susceptibility
(may be a tensor)

Definition of relative
permittivityb

εr =1+χE (7.88)

D= ε0εrE (7.89)

= εE (7.90)

εr relative permittivity

ε permittivity

Atomic
polarisabilityc p=αE loc (7.91)

α polarisability

E loc local electric field

Depolarising fields Ed =−NdP

ε0
(7.92)

Ed depolarising field

Nd depolarising factor

=1/3 (sphere)

=1 (thin slab ⊥ to P)

=0 (thin slab ‖ to P)

=1/2 (long circular
cylinder, axis ⊥ to P)

Clausius–Mossotti
equationd

nα

3ε0
=
εr −1

εr +2
(7.93)

aAssuming dipoles are parallel. The equivalent of Equation (7.112) holds for a hot gas of electric dipoles.
bRelative permittivity as defined here is for a linear isotropic medium.
cThe polarisability of a conducting sphere radius a is α=4πε0a

3. The definition p=αε0E loc is also used.
dWith the substitution η2 = εr [cf. Equation (7.195) with µr =1] this is also known as the “Lorentz–Lorenz formula.”



Magnetisation

Definition of
magnetic dipole
moment

dm= Ids (7.94)

dm dipole moment

I loop current

ds loop area (right-hand
sense with respect to
loop current)

�� ⊗

dm, ds

out in

Generalised
magnetic dipole
moment

m=
1

2

∫
volume

r′×××J dτ′ (7.95)

m dipole moment

J current density

dτ′ volume element

r′ vector to dτ′

Magnetic dipole
(scalar) potential

φm(r)=
µ0m ·r
4πr3

(7.96)

φm magnetic scalar
potential

r vector from dipole

µ0 permeability of free
space

Dipole moment per
unit volume
(magnetisation)a

M =nm (7.97)
M magnetisation

n number of dipoles
per unit volume

Induced volume
current density

J ind =∇×××M (7.98) J ind volume current
density (i.e., A m−2)

Induced surface
current density

j ind =M×××ŝ (7.99)

j ind surface current
density (i.e., A m−1)

ŝ unit normal to
surface

Definition of
magnetic field
strength, H

B=µ0(H+M ) (7.100)
B magnetic flux density

H magnetic field
strength

Definition of
magnetic
susceptibility

M =χHH (7.101)

=
χBB

µ0
(7.102)

χB =
χH

1+χH
(7.103)

χH magnetic
susceptibility. χB is
also used (both may
be tensors)

Definition of relative
permeabilityb

B=µ0µrH (7.104)

=µH (7.105)

µr =1+χH (7.106)

=
1

1−χB
(7.107)

µr relative permeability

µ permeability

aAssuming all the dipoles are parallel. See Equation (7.112) for a classical paramagnetic gas and
page 101 for the quantum generalisation.
bRelative permeability as defined here is for a linear isotropic medium.



Paramagnetism and diamagnetism

Diamagnetic
moment of an atom

m=− e2

6me
Z〈r2〉B (7.108)

m magnetic moment

〈r2〉 mean squared orbital radius
(of all electrons)

Z atomic number

B magnetic flux density

me electron mass

−e electronic charge

Intrinsic electron
magnetic momenta

m� − e

2me
gJ (7.109)

J total angular momentum

g Landé g-factor (=2 for spin,
=1 for orbital momentum)

Langevin function
L(x)=cothx− 1

x
(7.110)

�x/3 (x<∼ 1) (7.111)
L(x) Langevin function

Classical gas
paramagnetism
(|J | � h̄)

〈M〉=nm0L
(
m0B

kT

)
(7.112)

〈M〉 apparent magnetisation

m0 magnitude of magnetic dipole
moment

n dipole number density

Curie’s law χH =
µ0nm

2
0

3kT
(7.113)

T temperature

k Boltzmann constant

χH magnetic susceptibility

Curie–Weiss law χH =
µ0nm

2
0

3k(T −Tc)
(7.114)

µ0 permeability of free space

Tc Curie temperature

aSee also page 100.

Boundary conditions for E, D, B, and Ha

Parallel
component of the
electric field

E‖ continuous (7.115) ‖ component parallel to
interface

Perpendicular
component of the
magnetic flux
density

B⊥ continuous (7.116)
⊥ component

perpendicular to
interface

Electric
displacementb

ŝ · (D2 −D1)=σ (7.117)

D1,2 electrical displacements
in media 1 & 2

ŝ unit normal to surface,
directed 1→2

σ surface density of free
charge

�
2

1

ŝ

Magnetic field
strengthc ŝ×××(H2 −H1)=js (7.118)

H1,2 magnetic field strengths
in media 1 & 2

js surface current per unit
width

aAt the plane surface between two uniform media.
bIf σ=0, then D⊥ is continuous.
cIf js =0 then H‖ is continuous.


