Answers to Some Questions in Exercises

UNIT 1

- **1.11** 106.57 u
- **1.13** 143.1 pm
- **1.15** 8.97 g cm⁻³
- **1.16** Ni²⁺ = 96% and Ni³⁺ = 4%
- **1.24** (i) 354 pm (ii) 2.26×10²² unit cells
- 1.25 6.02×10^{18} cation vacancies mol⁻¹

UNIT 2

2.4	16.23 M	2.5	0.617 m, 0.01 and 0.99, 0.67
2.6	157.8 mL	2.7	33.5%
2.8	17.95 m and 9.10 M	2.9	1.5×10 ⁻³ %, 1.25×10 ⁻⁴ m
2.15	$40.907 \text{ g mol}^{-1}$	2.16	73.58 <i>k</i> Pa
2.17	12.08 <i>k</i> Pa	2.18	10 g
2.19	23 g mol ⁻¹ , 3.53 kPa	2.20	269.07 K
2.21	A = 25.58 u and B = 42.64 u	2.22	0.061 M
2.24	KCl, CH ₃ OH, CH ₃ CN, Cyclohexane		
2.25	Toluene, chloroform; Phenol, Pentanol; Formic acid, ethylelne glycol		
2.26	5 m	2.27	$2.45 \times 10^{-8} \mathrm{M}$
2.28	1.424%	2.29	3.2 g of water
2.30	4.575 g	2.32	0.65°
2.33	$i = 1.0753, K_a = 3.07 \times 10^{-3}$	2.34	17.44 mm Hg
2.35	178×10 ⁻⁵	2.36	280.7 torr, 32 torr
2.38	0.6 and 0.4	2.39	$x(O_2) 4.6x10^{-5}, x(N_2) 9.22 \times 10^{-5}$
2.40	0.03 mol of CaCl ₂	2.41	$5.27 \text{x} 10^{-3} \text{ atm.}$

UNIT 3

3.4 (i) $E^{\odot} = 0.34$ V, $\Delta_r G^{\odot} = -196.86$ kJ mol⁻¹, $K = 3.124 \times 10^{34}$ (ii) $E^{\odot} = 0.03$ V, $\Delta_r G^{\odot} = -2.895$ kJ mol⁻¹, K = 3.2**3.5** (i) 2.68 V, (ii) 0.53 V, (iii) 0.08 V, (iv) -1.298 V 1.56 V 3.6 $124.0 \text{ S cm}^2 \text{ mol}^{-1}$ 3.8 $0.219 \ cm^{-1}$ 3.9 1.85×10^{-5} 3.11 3.12 3F, 2F, 5F 3.13 1F, 4.44F 2F, 1F 3.14 3.15 1.8258g 14.40 min, Copper 0.427g, Zinc 0.437 g 3.16

281 Answers...

ec

UNIT 4

4.2	(i) $8.0 \times 10^{-9} \text{ mol } L^{-1} \text{ s}^{-1}$; $3.89 \times 10^{-9} \text{ mol}$	$L^{-1} s^{-1}$
4.4	$bar^{-1/2}s^{-1}$	
4.6	(i) 4 times	(ii) ¼ times
4.8	(i) 4.67 × 10^{-3} mol $L^{-1}s^{-1}$	(ii) $1.98 \times 10^{-2} \text{ s}^{-1}$
4.9	(i) rate = $k[A][B]^2$	(ii) 9 times
4.10	Orders with respect to A is 1.5 and order	er with respect to B is zero.
4.11	rate law = $k[A][B]^2$; rate constant = 6.0 1	$M^{-2}min^{-1}$
4.13	(i) 3.47 x 10^{-3} seconds	(ii) 0.35 minutes (iii) 0.173 years
4.14	1845 years	4.16 4.6×10^{-2} s
4.17	0.7814 µg and 0.227 µg.	4.19 77.7 minutes
4.20	$2.20 \times 10^{-3} \text{ s}^{-1}$	4.21 2.23 × 10 ⁻³ s ⁻¹ , 7.8 ×10 ⁻⁴ atm s ⁻¹
4.23	$3.9 \times 10^{12} \text{ s}^{-1}$	4.24 0.135 M
4.25	0.158 M	4.26 232.79 kJ mol ⁻¹
4.27	239.339 kJ mol ⁻¹	4.28 24°C
4.29	$E_a = 76.750 \text{ kJ mol}^{-1}, \ k = 0.9965 \times 10^{-2}$	s ⁻¹

4.30 52.8 kJ mol⁻¹

UNIT 6

- **6.1** Zinc is highly reactive metal, it may not be possible to replace it from a solution of $ZnSO_4$ so easily.
- 6.2 It prevents one of the components from forming the froth by complexation.
- **6.3** The Gibbs energies of formation of most sulphides are greater than that for CS_2 . In fact, CS_2 is an endothermic compound. Hence it is common practice to roast sulphide ores to corresponding oxides prior to reduction.
- 6.5 CO
- **6.6** Selenium, tellurium, silver, gold are the metals present in anode mud. This is because these are less reactive than copper.
- **6.9** Silica removes Fe_2O_3 remaining in the matte by forming silicate, $FeSiO_3$.
- **6.15** Cast iron is made from pig iron by melting pig iron with scrap iron and coke. It has slightly lower carbon content (* 3%) than pig iron (* 4% C)
- **6.17** To remove basic impurities, like Fe_2O_3
- **6.18** To lower the melting point of the mixture.
- 6.20 The reduction may require very high temperature if CO is used as a reducing agent in this case.

6.21 Yes,
$$2\text{Al} + \frac{3}{2}\text{O}_2 \rightarrow \text{Al}_2\text{O}_3 \quad \Delta_r\text{G}^{\ominus} = -827 \text{ kJ mol}^{-1}$$

$$2Cr + \frac{3}{2}O_2 \rightarrow Cr_2O_3 \qquad \Delta_r G^{\ominus} = -540 \text{ kJ mol}^{-1}$$

Hence
$$Cr_2O_3 + 2AI \rightarrow Al_2O_3 + 2Cr - 827 - (-540) = -287 \text{ kJ mol}^{-1}$$

- **6.22** Carbon is better reducing agent.
- **6.25** Graphite rods act as anode and get burnt away as CO and CO_2 during the process of electrolysis.
- 6.28 Above 1600K Al can reduce MgO.

Chemistry 282

UNIT 7

7.10	Becau	se of in	ability of	f nitroge	n to exp	and its o	covalency	[,] beyond	14.			
7.20	Freons	3										
7.22	It diss	olves in	rain wa	ter and	produces	s acid ra	uin.					
7.23	Due to	o strong	tendend	ey to acc	ept elect	rons, ha	alogens a	ct as st	rong oxi	dising age	ent.	
7.24	Due to	o high e	lectrone	gativity	and sma	ll size, i	t cannot	act as o	central a	tom in hi	gher oxoac	ids.
7.25	Nitrog	en has	smaller s	size thai	n chlorin	e. Smal	ler size fa	wours h	nydrogen	bonding.		
7.30	Synthe enthal		P_2 PtF ₆ in	spired B	artlett to	prepare	e XePtF ₆ a	as Xe ar	nd oxyger	n have nea	arly same io	onisation
7.31	(i)	+3	(ii)	+3	(iii)	-3	(iv)	+5	(v)	+5		
7.34	ClF, Y	es.										
7.36	(i) $I_2 <$	$F_2 < Br$	$_2$ < Cl ₂									
	(ii) HF	< HCl <	HBr < 1	HI								
	(iii) BiH	$I_3 \leq SbH$	$I_3 < AsH_3$	$_3 < PH_3 <$	MH_3							
7.37	(ii) NeF	2										
7.38	(i) XeF	4										
	(ii) XeF	2										
	(iii) XeC) ₃										

UNIT 8

- It is because Mn^{2+} has $3d^5$ configuration which has extra stability 8.2
- 8.5 Stable oxidation states.

 $3d^{3}$ (Vanadium): (+2), +3, +4, and +5 3d⁵ (Chromium): +3, +4, +6 3d⁵ (Manganese): +2, +4, +6, +7 $3d^{8}$ (Nickel): +2, +3 (in complexes)

 $3d^4$ There is no d^4 configuration in the ground state.

- Vanadate VO_3^- , chromate CrO_4^{2-} , permanganate MnO_4^- 8.6
- +3 is the common oxidation state of the lanthanoids 8.10
 - In addition to +3, oxidation states +2 and +4 are also exhibited by some of the lanthanoids.
- 8.13 In transition elements the oxidation states vary from +1 to any highest oxidation state by one For example, for manganese it may vary as +2, +3, +4, +5, +6, +7. In the nontransition elements the variation is selective, always differing by 2, e.g. +2, +4, or +3, +5 or +4, +6 etc.
- 8.18 Except Sc^{3+} , all others will be coloured in aqueous solution because of incompletely filled 3d-orbitals, will give rise to d-d transitions.
- (i) Cr^{2+} is reducing as it involves change from d^4 to d^3 , the latter is more stable configuration 8.21 (t_{2g}^3) Mn(III) to Mn(II) is from $3d^4$ to $3d^5$ again $3d^5$ is an extra stable configuration.

 - (ii) Due to CFSE, which more than compensates the 3^{rd} IE.
 - (iii) The hydration or lattice energy more than compensates the ionisation enthalpy involved in removing electron from d^1 .
- 8.23 Copper, because with +1 oxidation state an extra stable configuration, $3d^{10}$ results.
- 8.24 Unpaired electrons $Mn^{3+} = 4$, $Cr^{3+} = 3$, $V^{3+} = 2$, $Ti^{3+} = 1$. Most stable Cr^{3+}
- 8.28 Second part 59, 95, 102.
- Lawrencium, 103, +3 8.30

Answers...

8.36 $Ti^{2+} = 2, V^{2+} = 3, Cr^{3+} = 3, Mn^{2+} = 5, Fe^{2+} = 6, Fe^{3+} = 5, CO^{2+} = 7, Ni^{2+} = 8, Cu^{2+} = 9$

8.38 $M\sqrt{n(n+2)} = 2.2, n \approx 1, d^2 \text{ sp}^3, \text{ CN}^- \text{ strong ligand}$

= 5.3, n \approx 4, sp³, d^2 , H₂O weak ligand

= 5.9, $n \approx 5$, sp^3 , Cl^- weak ligand.

UNIT 9

9.5	(i) + 3 (ii) +3 (iii) +2 (iv) +3 (v) +3
9.6	(i) $[Zn(OH)_4]^2$ (ii) $K_2[PdCl_4]$ (iii) $[Pt(NH_3)_2Cl_2]$ (iv) $K_2[Ni(CN)_4]$
	(v) $[Co(NH_3)_5(ONO)]^{2+}$ (vi) $[Co(NH_3)_6]_2(SO_4)_3$ (vii) $K_3[Cr(C_2O_4)_3]$ (viii) $[Pt(NH_3)_6]^{4+}$
	(ix) $[CuBr_4]^{2-}$ (x) $[Co(NH_2)_5(NO_2)]^{2+}$
9.9	(i) $[Cr(C_2O_4)_3]^{3^{*}}$ Nil
	(ii) $[Co(NH_3)_3Cl_3]$ Two (fac- and mer-)
9.12	Three (two <i>cis</i> and one <i>trans</i>)
9.13	Aqueous $CuSO_4$ solution exists as $[Cu(H_2O)_4]SO_4$ which has blue colour due to $[Cu(H_2O)_4]^{2+}$ ions.
	(i) When KF is added, the weak H ₂ O ligands are replaced by F ligands, forming $[CuF_{4}]^{2^{n}}$ ions
	which is a green precipitate.
	$[Cu(H_2O)_4]^{2+} + 4F^- \rightarrow [CuF_4]^{2-} + 4H_2O$
	(ii) When KCl is added, Cl $$ ligands replace the weak $\rm H_2O$ ligands forming $\rm [CuCl_4)^{2-}$ ions which has bright green colour.
	$[Cu(H_2O)_4]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 4H_2O$
9.14	$[Cu(H_2O)_4]^{2+} + 4 CN^- \rightarrow [Cu(CN)_4]^{2-} + 4H_2O$
	As CN is a strong ligand, it forms a highly stable complex with Cu^{2+} ion. On passing H_2S , free
	Cu^{2+} ions are not available to form the precipitate of CuS.
9.23	(i) OS = +3, CN = 6, d-orbital occupation is $t_{2g}^{6} e_{g}^{0}$,
	(ii) OS = +3, CN = 6, $d^3 (t_{2g}^{3})$,
	(iii) OS = +2, CN = 4, d ⁷ ($t_{2g}^{5} e_{g}^{2}$),
	(iv) OS = +2, CN = 6, $d^5 (t_{2g}^3 e_g^2)$.
9.28	(iii)
9.29	(ii)
9.30	(iii)
9.31	(iii)
9.32	(i) The order of the ligand in the spectrochemical series :
	$H_2O < NH_3 < NO_2^-$
	Hence the energy of the observed light will be in the order :
	$[Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+} < [Ni(NO_2)_6]^{4-}$
	Thus, wavelengths absorbed (E = hc/λ) will be in the opposite order.

Chemistry 284

INDEX

Terms	Page No.	Terms	Page No.
Absorption	124	Collision frequency	117
Actinoid contraction	238	Collision theory of chemical reactions	117
Actinoids	215, 238	Column chromatography	166
Activated complex	114	Concentration of ores	158, 154
Activators	134	Concentration of solutions	36
Activation energy	114	Conductivity	75, 80
Adsorption	124	Conductors	26
Adsorption isotherm	127	Coordination compounds	244
Allotropic forms	180, 192	Coordination entity	247, 249
Ambidentate ligand	247	Coordination isomerism	251
Amorphous solids	2	Coordination number	14
Anisotropic	3	Coordination polyhedron	241
Anomalous behaviour of oxyg	en 187	Coordination theory	244
Antiferromagnetism	30	Copper matte	156, 161
Aqua regia	204	Corrosion	91
Arrhenius equation	113, 115	Cryoscopic constant	53
	171, 186, 198, 209	Crystal defects	24
Average rate	97	Crystal field splitting	257, 258
Avogadro constant	22	Crystal field theory	257
Azeotrope	48, 49	Crystal lattice	
Batteries	88	Crystalline solids	2, 3, 4
Binary solutions	35, 43, 46	Dalton's law	<u>_</u> , 0, 44
Biochemical catalysis	133	Daniell cell	66
Black phosphorus	181	Denticity	247
Blast furnace	159, 160, 161	Dependence of rate on concentration	100
Blister copper	162	Depressants	154
Body-centred unit	9, 13	Dialyser	140
Bohr magneton	29, 228	Dialysis	140
Bonding in metal carbonyls	23, 228	Diamagnetism	30, 227
Bravais lattices	10	Didentate	247
Bredig's arc	139	Diode	247
Brown ring test	139	Dislocation defect	25
Brownian movement	142	Dispersed phase	136, 137
Calcination	142		
	160, 161	Dispersion medium	136, 137 263
Cast iron		Dissociation constant	
Catalyst	116, 130	Distillation	164
Cell potential	68	Ebullioscopic constant	51
Chelate	247	Electrical conductance	76
Chemical kinetics	95	Electro dialysis	140
Chemisorption	125	Electrochemical cells	66
Chiral	252	Electrochemistry	65
Chromatographic methods	165	-	3, 224, 227
Cis - isomer	252	Electrolytes	81
Classification of colloids	136	Electrolytic cell	85
Close-packed structures	14	Electrolytic refining	164
Coagulation	144	Electromotive force	68
Colligative properties	49, 58	Electron hole	28

285 Index

Terms	Page No.	Terms
Electron vacancy	28	Inhibit
Electronegativity	172, 187, 199	Inner
Electronic configuration	216	Instabi
Electronic defect	28	Instant
Electroosmosis	144	Insulat
Ellingham diagram	157, 158	Inter n
Emulsions	137, 145	Interst
Enantiomers	252	Interst
End-centred unit	9	Intrins
Enthalpy	126	Ionic c
Enzyme catalysis	133, 134	Ionic r
Equilibrium constant	73	Ionic s
f block elements	234	Ionisat
Face centred unit	9, 13	Ionisat
Facial isomer	252	Isolatio
Faraday's law	85	Isomer
Ferrimagnetism	30	Isotoni
Ferromagnetism	30, 228	Kinetic
First order reaction	106, 111	Kohlra
Froth floatation	154	Kraft t
Fractional distillation	174	Lantha
Frenkel defect	24, 25	Lantha
Frequency factor	113	Le Cha
Freundlich isotherm	127	Leachi
Fuel cells	90	Lewis a
Galvanic cell	66, 67, 90	Ligand
Gangue	153	Ligand
Gels	137	Line de
Geometric isomerism	251	Linkag
Giant molecules	5	Liquat
Gibbs energy	67, 74, 117	Long r
Haber's process	131	Lyophi
Half-life	110	Lyopho
Hall heroult process	163	Magne
Halogens	197	Meridi
Henry's law	41	Metal
Heterogeneous catalysis	130	Metal
Heteroleptic complex	248	Metalli
Holme's signals	182	Metallı
Homogeneous catalysis	130	Micelle
Homoleptic complex	248	Minera
Hybridisation	255	Mischr
Hydrate isomerism	254	Molal
Hydration enthalpy	224	Molali
Hydraulic washing	153	Molar
Hydro metallurgy	163	Molari
Hydrogen bonded molecular solids	5	Mole f
J. St. St. More and Solido		Molecu
Ideal solution	47	NORCE

Terms	Page No.
Inhibitors	134
Inner transition metals	234
Instability constant	263
Instantaneous rate of a reacti	ion 98, 99
Insulators	27
Inter molecular forces	2
Interstitial compounds	230
Interstitial defect	25
Intrinsic semiconductors	27
Ionic conductance	77
Ionic radii	171, 186, 198
Ionic solids	5
Ionisation enthalpy	171, 187, 198, 209
Ionisation isomerism	253
Isolation of elements	149
Isomerism	251
Isotonic solution	56
Kinetic energy	115
Kohlrausch law	83, 84
Kraft temperature	138
Lanthanide contraction	219
Lanthanoids	215
Le Chateliers principle	40, 43
Leaching	154
Lewis acids	247
Ligand field theory	254
Ligands	234
Line defects	247
Linkage isomerism	253
° '	164
Liquation	104
Long range order Lyophilic colloids	137
•	
Lyophobic colloids	137
Magnetic separation	153
Meridional isomer	252
Metal carbonyls	261
Metal excess defect	26
Metallic solids	5
Metallurgy	153, 156
Micelles	138
Minerals	152
Mischmetall	237
Molal elevation constant	51
Molality	39
Molar conductivity	81
Molarity	38, 55
Mole fraction	37, 50
Molecularity of a reaction	103
Mond process	165

Chemistry 286

Terms	Page No.	Terms
Secondary b	192	Monoclinic sulphur
Secondary v	249	Mononuclear coordination compounds
Semi condu	72, 73	Nernst equation
Semipermea	208	Noble gases
Shape-select	47	Non-ideal solution
Short range	4	Non-polar molecular solids
Smoke scree	17, 19	Octahedral voids
Solid state	252	Optical isomerism
Sols	102	Order of a reaction
Solubility	152	Ores
Solvate ison	54	Osmotic pressure
Stereo isomo	131	Ostwald's process
Stoichiomet	248	Oxidation number
Strong field	199	Oxidation state
Structural is	177	Oxides of nitrogen
Super coole	205	Oxoacids of halogens
Surface che	184. 185	Oxoacids of phosphorus
Temperature	104, 103	Oxoacids of sulphur
Tetrahedral	191	Ozone
Tetrahedral	20	Packing efficiency
Thermodyna	166	Paper chromatography
Trans isome	29, 227	Paramagnetism
Transition r	170	p-block elements
Tyndall cone	140	Peptization
Tyndall effec	140	-
Ultrafiltratio	125	Physisorption Big iron
Unidentate	24	Pig iron Point defects
Unit cells	24 5	Polar molecular solids
Units of rat	247	
Units of rat	88	Polydentate
		Primary battery
Vacancy defe	244	Primary valence
Valence bon	112	Pseudo first order reaction
Van arkel m	3	Pseudo solids
Vapour phas	153	Purification of metal
Vapour press	162	Pyrometallurgy Raoult's law
Voltaic cell	43, 46	
Weak field l	100, 101	Rate law
Werner's the	101	Reaction rate constant
Wheatstone	67	Redox couples
White phosp	181	Red phosphorus
Wrought iro	156	Reverberatory furnace
Zeolites	57	Reverse osmosis
Zero order l	192	Rhombic sulphur
Zeta potenti	155, 159	Roasting
Zone refinin	24, 25	Schottky defect
		Schottky defect

ſerms	Page No.
Secondary battery	89
Secondary valence	244, 245
Semi conductors	27
Semipermeable membrane	55
Shape-selective catalysis	132
Short range order	2
Smoke screens	182
Solid state	2
Sols	137
Solubility	39
Solvate isomerism	254
Stereo isomerism	254
Stoichiometric defect	24
Strong field ligands	258
Structural isomerism	251
Super cooled liquids	3
Surface chemistry	123
remperature dependence of rate	113
Tetrahedral permanganate	226
Tetrahedral voids	16, 18
Thermodynamics	156
Frans isomer	251
Fransition metals	215
Fyndall cone	141
Fyndall effect	141
Ultrafiltration	140
Unidentate	247
Unit cells	7, 9
Units of rate constant	103
Units of rate of a reaction	97
Vacancy defect	25
Valence bond theory	254, 257
Van arkel method	165
Vapour phase refining	165
Vapour pressure	43, 46
Voltaic cell	66
Weak field ligands	254
Werner's theory	244
Wheatstone bridge	75, 78
White phosphorus	181
Wrought iron	161, 167
Zeolites	132, 133
Zero order Reaction	105, 111
Zeta potential	143
Zone refining	165

287 Index

Notes